TUTl

Technische Universitat Munchen

HyPer: one DBMS for all

Tobias Muhlbauer, Florian Funke,Viktor Lelis, Henrik MUhe, Wolf Rodiger,
Alfons Kemper; Thomas Neumann

Technische Universitat Munchen

New England Database Summit 20 14

http://www.hyper-db.com/

http://www.hyper-db.com

One DBMS for all? o17p and oLap

Traditionally, DBMSs are either optimized for OLTP or OLAP

OLTP solation: Snapshotting

* high rate of mostly tiny transactions OLAP

* high data access locality

OLAP

» few, but long-running transactions

* scans large parts of the database

* must see a consistent database state during execution

Conflict of interest: traditional solutions like 2PL would block OLTP

However: Main memory DBMSs enable new options!

2

One DBMS for all? Wimpy and brawny

High-performance DBMSs are optimized for brawny servers

Brawny servers

. *2 A predominarltly ARMv7 S Q2 2012
* predominantly x86-64 arch < 200m | — G2 2013
* multiple sockets, many cores g 150M"
__g_ 100M 1) predominantly x86-64 y
?)’ 50M -
Wimpy devices S o | . I
. = Smartphone Tablet PC Server
» predominantly ARM arch — wimpy brawny —>

IHS. Processor Market Set for Strong Growth in 2013, Courtesy of Smartphones and Tablets.

* wide-spread use of SQLite

* energy efficiency very important

Question: How to enable high-performance OLTP/OLAP on different
architectures (ARM, x86-64, ...)!

P HyPer: one DBMS for all

Simultaneous (ACID) OLTP and (SQL-92+) OLAP:
- Efficient snapshotting (ICDE 201 |)

Platform-independent high-performance on brawny and wimpy nodes:
» Data-centric code generation (VLDB 201 |)

Recent research:
- ARTful indexing: the adaptive radix tree (ICDE 201 3)
* HTM for concurrent transaction processing (ICDE 2014)
» Compaction: Hot/Cold Clustering of transactional data (VLDB 2012)
* Instant Loading: bulk loading at wire speed (VLDB 2014)
* ScyPer: replication and scalable OLAP throughput (DanaC 201 3)
* Locality-aware parallel DBMS operators (ICDE 2014)

4

Efficient Snapshotting

HyPer isolates long-running transactions (e.g., OLAP)
using virtual memory (VM) snapshots.

» OLTP "owns" database , Pagetable
» for OLAP only VM page A
L) Pagetable »--.---1' -------- {-:
table is initially copied IR ol ab-Seccion
- MMU/OS keep track of -
changes OLTP Requests/Tx :,] ./,'F'{;;da
- - - 0> o L
. S C -
* snapshots remain - 4
. . Update a'-=a" ™\ O
consistent (copy on write) e st |, 7 AOQ
- very little overhead Virtual Mermory Managerment (PQ\‘\Q

Extremely fast execution model.

Supports OLTP and OLAP simultaneously.

Data-centric Code Generation

Main memory is so fast that CPU becomes the bottleneck

» classical iterator model fine for disks,
but not so for main memory

*
* o
* o
* *
*

*
*
*
*
*
*

0. .
o o ‘Y
* a—
. —_

*
*
*
*
*
*

» terator model: many branches,
bad code and data locality

O-xé—-7
HyPer's data-centric code generation Rl r
* touches data as rarely as possible et o
* prefers tight work loops (I);/=3
. load data into CPU registers | |
2. perform all pipeline operations Rz R3

3. materialize into next pipeline breaker

» efficient platform-independent machine code generation using LLVM

6

Resent Research

lentative Execution

MUhe, H; Kemper, A.;; Neumann, T., “Executing Long-Running Transactions in Synchronization-Free Main
Memory Database Systems”, CIDR, 2013

'

o L _OC
OO am» -
QQ Ql@_
000

* HyPer offers outstanding performance for tiny transactions: > 00,000 TPC-C
transactions per second per hardware thread

* Long-running transactions that write to the database cripple performance

» Tentative execution: process long-running transactions on snapshot and
“merge’ changes into main process
8

ARTtul Indexing

Leis,V.,; Kemper, A,; Neumann, T., " The adaptive radix tree: ARTful indexing for main-memory
databases”, ICDE, 2013

Adaptive Radix Tree (Trie) indexing e chid ponter \
- efficient general-purpose read/ vodealispeped | 4 1 1y
Write/update_able index S-truc-tu re child index ¢ child pointer

p /\
0O 1 2 3

» faster than highly-tuned, read-only Node4s
search trees

......
lllllllllllllllllllll

* optimized for modern hardware T w
Nodel16 | 3 [8 | 9 | - [255

* highly space-efficient by adaptive

child pointer J

choice of compact data structures ' 2

0 1 2 3 4 5 6 255
Node256 | TID TID TID TID TID | TID

» performance comparable to HT

- BUT: data Is sorted; enables, e.g,
range scans and prefix lookups

H ™M for Concurrency Control

Leis,V.; Kemper, A;; Neumann, T., “Explorting Hardware Transactional Memory in Main-Memory
Databases”, ICDE, 2014

L database transaction

conflict detection: read/write sets via timestamps
elided lock: serial execution

timestamp conflict
“,
/\\470

O%’é

request a new timestamp, record safe timestamp
X

L~ HTM transaction

conflict detection: read/write sets in hardware
elided lock: latch

- single tuple access

N
™} verify/update tuple timestamps

4 .
1~ HTM transaction

conflict detection: read/write sets in hardware
elided lock: latch

[~ single tuple access

~ verify/update tuple timestamps

release timestamp, update safe timestamp

transactions per second

400,000 -

300,000 -

200,000 -

100,000

—e— partitioned

—— HTM
serial

— 2PL

1 2 3 4
multiprogramming level (threads)

» Concurrent transaction processing in main memory DBMSs often relies on
user-provided data partitioning (| thread per partition)

- BUT: what if no partitioning is provided/can be found?

- Hardware transactional memory (HTM) allows for efficient light-weight
optimistic concurrency control without explicit partitions

10

Compaction: Hot/Cold Clustering

Funke, F; Kemper, A.; Neumann, T.,"Compacting Transactional Data in Hybrid OLTP&OLAP

Databases” VLDB 2012

Main memory Is a scarce resourcel

S o
\-— ———/ L
N — ==~
S ﬂ=d=.-__}5'
|deal clustering Reality

Hot/Cold Clustering

“lemperature” detection:

* Hardware-assisted (MMU)

* Almost no overhead!

Hot

Column

=== = =
H-——

ii

il
0joe H 0ogeo
pogoogoogengoe
00jo0j0 0400800

0o
0

Hot and Cold
Purge hot ritems

Cooling

4 N
Immutable
Compressed

\O;)timized for OLAPJ

Frozen

Instant Loading

MUhlbauer, T.; Rodiger, W Seilbeck, R;; Reiser, A.; Kemper, A.;; Neumann, T, “Instant Loading for Main
Memory Databases”, PVLDB, 201 3, presented at VLDB 2014

| CSV hioh ; CSV or binary |

. igh-spee |

i DDDVD@D NAS/DFS or SSD/RAID D000 |

| window of interest o |

_________ _O_____________________________________ 8 —_——— —
g loading/unloading at wire speed g

>

o ueries

5 .e00e

()

£ S

f= updates

g <00 000

(1) Load csv (2) Work: OLTP and OLAPin (3) Unload

full-featured database

* Bulk loading of structured text data is slow in current DBMSs

Current loading does not saturate wire speed of data source and data sink

Instant Loading allows scalable bulk loading at wire speed by efficient task-
and data-parallelization

| Ox faster than Vectorwise/MonetDB, orders of magnitude faster than
traditional DBMSs (with same conversions/consistency checks)

12

SC)/PeI” Replication and Scalable OLAP Throughput

Muhlbauer, T.; Rodiger, W, Reiser, A,; Kemper; A.; Neumann, T., “ScyPer: Elastic OLAP Throughput on
Transactional Data”, DanaC, 2013

OLAP Load Balancing

®oAr® - © \.\ ‘\ 200 I B writers [readers M aborts
Snapshotting ' ' E 23%
= 600 | faster 56%
£ faster
=
@ OLTP ® > 5 400 ¢
5
O]
‘ S % 200 +
Primary HyPer el -
\ Redo Log Multicasting } 0
N normal logical log physical log
On-Demand Secondary HyPer Nodes execution replaying replaying

* Secondary nodes needed for high availability—why not use them for OLAP?

* Primary HyPer node processes transactions and multicasts the redo log to
secondaries (via Ethernet or Infiniband)

* We advocate for physical log multicasting after commit
* non-determinism In transaction logic and by unforeseeable faults

* No need to re-execute expensive transaction logic
13

Data Sthﬂlﬂg Distributed Query Processing with HyPer

Rodiger, W, MUhlbauer; T.; Unterbrunner, B; Reiser; A.; Kemper, A.; Neumann, T, “Locality-Sensitive
Operators for Parallel Main-Memory Database Clusters”, ICDE, 2014

Node 0 Node 1 Node 2

Po P P2 Ps Ps Ps Ps P

noceo 0 1 AR 1 4 1 4
vooe 1 13 2 2 [3 FEN
voce2 2 [l 2 3 3B 2 o

Distributed operators
like the join operator
need data shuffling

network phase duration

]
Node O :

Po P1 P2 P3P4 PsPe P7 Po P1 P2 P3P4 PsPs Pz PoP1P2P3Ps PsPg P7 0

Locality-aware data shuffling:
» can explort already small degrees of data locality
» does not degrade when data exhibits no co-location
» optimally assigns partitions
» avoids cross traffic through communication scheduling

|4

A HyPer - A Hybrid OLTP&OLAP High Performance DBMS

HyPer is a hybrid online transactional processing (OLTP) and online analytical processing (OLAP) high-performance main

memory database system that is optimized for modern hardware. HyPer achieves highest performance—compared to state of the
art main memory databases—for both, OLTP (> 100,000 single-threaded TPC-C TX/s on modern commodity hardware) and
OLAP (best-of-breed response times), operating simultaneously on the same database.

e | e

News: See you at ICDE 2014 in Chicago and VLDB 2014 in Hangzhou! {see our ICDENVLDB 2014 publications below)

Highlights

In-memory Data Management

HyPer re'es on n-memory data management without the ba ast of
tradtona database systems caused by DBMS-contro'ed page
structures and buffer management. SQL tabe defntons are
transformed nto smple vector-based vrtual memory representatons -
which constiutes a coumn orented phys.cal storage scheme.

Efficient Snapshotting

OLAP query process ng s separated from mss.on-crtca OLTP
transaction processng by forking virtual memory snapshots. Thus, no
concurrency control mechansms are needed - other than the
nardware-ass sted transparent VM management - 10 separate the two

wor<oad casses.

Data-centric Code Generation -— D T ® >

Transactons and queres are spacfed n SQL or a PL/SQL-1xe N
scrptng ‘anguage and are effcently comped nto effcent LLVM N

{

Pagetable

ccccsdecccnnne

OLTP Requests/Tx

~

~

Fla

Undate a'-=a"

http://www.hyper-db.com/

15

TUTI

OLAP-Session

http://www.hyper-db.com

HyPer Weblinterface

TPC-H query 8

Note: This Weblinterface queries a HyPer instance executing queries in a single thread on a low-end server (intel® Core™ 13-2120 CPU, 16 GB RAM); mind that this interface is
thus not intended for benchmarking purposes.

Enter a SQL query aganst a scale-factor 1 TPC-H or the Uni database and retrieve the resu't set or show the optimized query plan:

L T P P

<

10
11
12
13
14
15
16
17
ie
19
20
21
22
23
24
25
26
27
28
29
a0
) |
a2
33
34
as
36
a7
e

sclect

o_year,
sum({case

when nation = 'BRAZIL' then volume

else 0

end) / sum{volume) as mkt_share

from

{
sclect

from

} as all nations
group by

o_year
order by

o_year

extract{year from o orderdate) as o_year,

1 _extendedprice * (1 - 1 _discount) as volume,

n2.n_name as nation

part,
supplier,
lineitem,

p_partkey = 1 partkey

and s_suppkey = 1 _suppkey

1 orderkey = o _orderkey

o_custkey = c_custkey

c_nationkey = nl.n_nationkey
nl.n_regionkey = r_ regionkey

r_name = 'AMERICA'

s_nationkey = n2.n_nationkey
o_orderdate between date '1995.01.01°
p_type = 'ECONOMY ANODIZED STEEL'

RERERRER

T ES T

http://www.hyper-db.com/interface.html

and date

|6

'1996~12-31'

Insert TPC-H Query ~

g I ©

http://www.hyper-db.com

Query Plan TPC-H query 8

Show Information: All / None

(] Attributes [| Cardinalities [Criteria || Predicates [Restrictions [Residuals [Outputs

sort
—T—‘
X
T‘
r
T
X
T
hash
[|
nation hash g J
|
| |
haah g supplier J
| |
hash g l indexnlyg J
[| : | : |
region J nation] el] customer J

1

| |

hash),4 l orders l

part J Iinelitem]

http://www.hyper-db.com/interface.html

|/

http://www.hyper-db.com

TPC-H query 8

Query Result

Compilation time: 48.5447 ms
Execution time: 50.4597 ms
Result set size: 2

o_year mkt_share

1995 0.0344
1996 0.0414

VWeblnterface on TPC-H scale factor |, non-parallel query execution
Note: compilation time independent of scale factor

Soon:Weblnterface on brawny machine, TPC-H scale factor 100, parallel query
execution and instant loading interface for your own files!

http://www.hyper-db.com/interface.html

|18

http://www.hyper-db.com

Conclusion
http://www.hyper-db.com/

Inspired by “OLTP through the looking glass” and “The End of an Architectural
Era”, the HyPer project has been started.

HyPer is one DBMS that ...

- offers highest performance on both, brawny x86-64 platforms
as well as wimpy ARM platforms

 performance comparable to/outperforming VoltDB in TPC-C
» performance comparable to/outperforming Vectorwise in TPC-H

« enables OLAP on the most recent OLTP state

http://www.hyper-db.com

References

)

2)
3)

4)
)
6)
/)
3)

?)

Kemper, A,; Neumann, T., "HyPer: A hybrid OLTP&OLAP main memory database system based
on virtual memory snapshots”, ICDE, 201 |

Neumann, T., “Efficiently compliling efficient query plans for modern hardware”,VLDB, 201 |

MUhe, H; Kemper, A.;; Neumann, T, “Executing Long-Running Transactions in Synchronization-
Free Main Memory Database Systems’™, CIDR, 2013

Leis,V.; Kemper, A,; Neumann, T.,“The adaptive radix tree: ARTful indexing for main-memory
databases”, ICDE, 2013

Leis,V.; Kemper, A;; Neumann, T., “Exploiting Hardware Transactional Memory in Main-Memory
Databases’”, ICDE, 2014

Funke, F; Kemper, A,; Neumann, T.,“Compacting Transactional Data in Hybrid OLTP&OLAP
Databases”,VLDB 2012

MUhlbauer, T,; Rodiger, W.; Seilbeck, R.; Reiser; A.; Kemper, A.; Neumann, T., “Instant Loading for
Main Memory Databases”, PVLDB 2013,VLDB 2014

MUhlbauer, T,; Rodiger, W, Reiser, A,; Kemper; A.; Neumann, T., “ScyPer: Elastic OLAP Throughput
on Transactional Data”, DanaC, 2013

Rodiger, W, Mihlbauer; T.; Unterbrunner, P; Reiser; A.; Kemper, A,; Neumann, T, “Locality-Sensitive
Operators for Parallel Main-Memory Database Clusters”, ICDE, 2014

20

