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One DBMS for all? OLTP and OLAP

Traditionally, DBMSs are either optimized for OLTP or OLAP	



!

OLTP	


• high rate of mostly tiny transactions	


• high data access locality	



!

OLAP	


• few, but long-running transactions	


• scans large parts of the database	


• must see a consistent database state during execution	



!

Conflict of interest: traditional solutions like 2PL would block OLTP	



However: Main memory DBMSs enable new options!
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OLAP

OLTP

Isolation: Snapshotting



One DBMS for all? Wimpy and brawny

High-performance DBMSs are optimized for brawny servers	


!

Brawny servers	


• predominantly x86-64 arch	


• multiple sockets, many cores	



!

Wimpy devices	


• predominantly ARM arch	


• wide-spread use of SQLite	


• energy efficiency very important	



!

Question: How to enable high-performance OLTP/OLAP on different 
architectures (ARM, x86-64, ...)? 

���3

One DBMS for all: the Brawny Few and the Wimpy Crowd

Tobias Mühlbauer Wolf Rödiger Robert Seilbeck

Angelika Reiser Alfons Kemper Thomas Neumann

Technische Universität München

{muehlbau, roediger, seilbeck, reiser, kemper, neumann}@in.tum.de

ABSTRACT
Shipments of smartphones and tablets with wimpy CPUs
are outpacing brawny PC and server shipments by an ever-
increasing margin. While high performance database sys-
tems have traditionally been optimized for brawny systems,
wimpy systems have received only little attention; leading to
poor performance and energy ine�ciency on such systems.

This demonstration presents HyPer, a high-performance
hybrid OLTP&OLAP main memory database system that
we optimized for both, brawny and wimpy systems. The
e�cient compilation of transactions and queries into e�-
cient machine code allows for high performance, indepen-
dent of the target platform. HyPer has a memory footprint
of just a few megabytes, even though it supports the SQL-
92 standard, a PL/SQL-like scripting language, and ACID-
compliant transactions. It is the goal of this demonstra-
tion to showcase the same HyPer codebase running on (a)
a wimpy ARM-based smartphone system and (b) a brawny
x86-64-based server system. In particular, we run the TPC-
C, TPC-H, and a combined CH-benCHmark and report per-
formance and energy metrics. The demonstration further al-
lows the interactive execution of arbitrary SQL queries and
visualization of optimized query plans.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
high performance, energy e�ciency, wimpy, brawny

1. INTRODUCTION
Processor shipments reached 1.5 billion units in 2013, a

rise of 24% over 2012 [4]. This growth was mainly driven by
strong smartphone and tablet sales. PC and server sales,
however, stagnated (see Fig. 1). As shipments of wimpy
CPUs are outpacing shipments of brawny CPUs, we are en-
tering an era of the brawny few and the wimpy crowd.
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Figure 1: Shipments of wimpy processors are out-
pacing shipments of brawny processors [4]

While the number of devices with wimpy processors is
ever-increasing, these devices receive only little attention
from the database community. It is true that database
vendors have developed small-footprint database systems,
e.g., IBM DB2 Everyplace, Oracle Lite and BerkeleyDB,
SAP Sybase SQL Anywhere, and Microsoft SQL Server CE.
However, these systems either reached end-of-life, are non-
relational data stores, or are intended for synchronization
with a remote backend server only. In fact, SQLite has
evolved to become the de facto standard database for mo-
bile devices. Apple’s and Google’s mobile operating sys-
tems both use SQLite as the default database solution [1, 3],
which makes it the backbone of almost all smartphone ap-
plications. SQLite, however, is neither a high-performance
database system nor is it specifically optimized for wimpy
processors. This is revealed by our benchmarks, which show
that the performance of SQLite is orders of magnitude slower
than an optimized high performance database kernel.
However, the need for high-performance database systems

on mobile devices increases. More and more applications
run natively on mobile devices and roundtrip latencies to
data centers hinder user experience. To develop more dis-
connected and sophisticated applications, full-featured high-
performance data processing capabilities are required. In
addition, energy e�ciency usually goes hand in hand with
performance [9]. This is because faster data processing con-
sumes less CPU time and modern CPUs can save large
amounts of energy by dynamically throttling their frequency.
Ideally, a database system for both, brawny and wimpy

systems, should (i) have a small memory footprint, (ii) of-
fer high-performance ACID-compliant transaction and SQL
query processing capabilities, and (iii) be platform inde-
pendent such that the system is universally deployable and

IHS. Processor Market Set for Strong Growth in 2013, Courtesy of Smartphones and Tablets.



                    HyPer: one DBMS for all
!

Simultaneous (ACID) OLTP and (SQL-92+) OLAP:	



• Efficient snapshotting (ICDE 2011)	



Platform-independent high-performance on brawny and wimpy nodes:	



• Data-centric code generation (VLDB 2011)	



Recent research:	



• ARTful indexing: the adaptive radix tree (ICDE 2013)	



• HTM for concurrent transaction processing (ICDE 2014)	



• Compaction: Hot/Cold Clustering of transactional data (VLDB 2012)	



• Instant Loading: bulk loading at wire speed (VLDB 2014)	



• ScyPer: replication and scalable OLAP throughput (DanaC 2013)	



• Locality-aware parallel DBMS operators (ICDE 2014)	
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Efficient Snapshotting
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• OLTP “owns” database	


• for OLAP only VM page 

table is initially copied	


• MMU/OS keep track of 

changes	


• snapshots remain 

consistent (copy on write)	


• very little overhead

HyPer isolates long-running transactions (e.g., OLAP) 
using virtual memory (VM) snapshots.

Extremely fast execution model.	


Supports OLTP and OLAP simultaneously.



Data-centric Code Generation
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Data Centric Execution

Ideally, process pipeline fragments in tight loops

1. load data from the source pipeline breaker into CPU registers

2. perform all pipelining operations

3. materialize into the next pipeline breaker

Minimized memory accesses and produces compact code

• runtime native code generation using LLVM

• no interpretation overhead

• matches performance of hand-written code

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

Main memory is so fast that CPU becomes the bottleneck	


• classical iterator model fine for disks,                                              

but not so for main memory	


• iterator model: many branches,                                                      

bad code and data locality	


!

HyPer’s data-centric code generation	


• touches data as rarely as possible	


• prefers tight work loops	



1. load data into CPU registers	


2. perform all pipeline operations	


3. materialize into next pipeline breaker	



• efficient platform-independent machine code generation using LLVM



Resent Research



Tentative Execution
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!
• HyPer offers outstanding performance for tiny transactions: > 100,000 TPC-C 

transactions per second per hardware thread	


• Long-running transactions that write to the database cripple performance	


• Tentative execution: process long-running transactions on snapshot and 

“merge” changes into main process

Mühe, H; Kemper, A.; Neumann, T., “Executing Long-Running Transactions in Synchronization-Free Main 
Memory Database Systems”, CIDR, 2013



ARTful Indexing

���9

13 129130

key child pointer

3 8 9 ……

key child pointer

Node4

Node16

Node48

Node256

0 1 2
… …

child index child pointer

3 255

0 1 2
…

3 255
child pointer

4 5 6

255

0 1 2 3 0 1 2 3

0 1 2 0 1 2 1515

47210

TID TID TID TIDTID TID

HTM transaction
conflict detection: read/write sets in hardware
elided lock: latch

single tuple access
verify/update tuple timestamps

...

...

database transaction

conflict detection: read/write sets via timestamps
elided lock: serial execution

request a new timestamp, record safe timestamp

release timestamp, update safe timestamp

HTM transaction
conflict detection: read/write sets in hardware
elided lock: latch

single tuple access
verify/update tuple timestamps

HTM
 co

nf
lic

t

HTM
 co

nf
lic

t

tim
es

ta
m

p 
co

nf
lic

t

0

5

10

15

20

ART
(dense)

ART
(sparse)

GPT
(dense)

GPT
(sparse)

RB CSB kary FAST HT

M
 lo

ok
up

s/
se

co
nd

Adaptive Radix Tree (Trie) indexing	


• efficient general-purpose read/

write/update-able index structure	


• faster than highly-tuned, read-only 

search trees	


• optimized for modern hardware	


• highly space-efficient by adaptive 

choice of compact data structures	


• performance comparable to HT	


• BUT: data is sorted; enables, e.g., 

range scans and prefix lookups

Leis, V.; Kemper, A.; Neumann, T., “The adaptive radix tree: ARTful indexing for main-memory 
databases”, ICDE, 2013



HTM for Concurrency Control
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• Concurrent transaction processing in main memory DBMSs often relies on 
user-provided data partitioning (1 thread per partition)	



• BUT: what if no partitioning is provided/can be found?	


• Hardware transactional memory (HTM) allows for efficient light-weight 

optimistic concurrency control without explicit partitions

Leis, V.; Kemper, A.; Neumann, T., “Exploiting Hardware Transactional Memory in Main-Memory 
Databases”, ICDE, 2014



Compaction: Hot/Cold Clustering
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Hot/Cold Clustering & Compaction

Temperature Detection
  - Hardware-powered
  - No overhead

Hot and Cold	


Purge hot items

Immutable	


Compressed	


Optimized for OLAP	



  

Hot/Cold Clustering & Compaction

Ideal clustering

  

Hot/Cold Clustering & Compaction

Ideal Hot/Cold
Clustering Reality

Reality

Hot/Cold Clustering

Main memory is a scarce resource!	


!
!
!
!
!
!
!
!
“Temperature” detection:	



• Hardware-assisted (MMU)	


• Almost no overhead!

Funke, F.; Kemper, A.; Neumann, T., “Compacting Transactional Data in Hybrid OLTP&OLAP 
Databases”, VLDB 2012



Instant Loading
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Figure 2: Instant Loading for data staging process-
ing: load-work-unload cycles across CSV data.

Contributions. To achieve true instantaneous loading,
we optimize CSV bulk loading for modern super-scalar multi-
core CPUs by task- and data-parallelizing all phases of load-
ing. In particular, we make the following contributions: In
a first step we propose generic high-performance parsing,
deserialization, and input validation methods based on SSE
4.2 SIMD instructions. While these already improve load-
ing time significantly, other phases of loading become the
bottleneck. We thus further show how copying deserialized
tuples into the storage backend can be sped up and how in-
dex creation can e�ciently be interleaved with parallelized
bulk loading using merge-able index structures (e.g., hash-
ing with chaining and the adaptive radix tree (ART) [21]).

Our implementation of the Instant Loading approach aims
at highest performance in an in-memory computation set-
ting where raw CPU costs dominate and I/O is orders of
magnitude faster than disk access. We therefore strive for
good code locality and apply light-weight synchronization
primitives such as atomic instructions.

To prove its feasibility, we integrate the generic Instant
Loading approach in our main memory database system Hy-
Per [20] and evaluate our implementation using the industry-
standard TPC benchmarks. Results show improvements of
up to a factor of 10 on a quad-core commodity machine com-
pared to current main memory database CSV bulk loading
methods in, e.g., MonetDB [4] and Vectorwise. As Instant
Loading minimizes the proportion of sequential code, we
expect it to continue to scale with faster data sources and
CPUs with ever more cores.

Instant Loading in action: the (lwu)* data staging
processing model. Modern servers with 1TB of main
memory and more o↵er enough space to facilitate a highly
e�cient data staging processing model to work on large sets
of structured text data using a main memory database. Our
processing model consists of instantaneous load -work-unload
cycles (lwu)* across windows of interest.

Data staging workflows exist in eScience (e.g., astronomy
and genetics [30, 29]) and other big data analytics appli-
cations. For example, Netflix, a popular on-demand media
streaming service, reported that they are collecting 0.6TB
of CSV-like log data in a DFS per day [11]. Each hour,
the last hour’s structured log data is loaded to a 50+ node
Hadoop/Hive-based data warehouse, which is used for the
extraction of performance indicators and for ad-hoc queries.
Our vision is to use Instant Loading in a single-node main
memory database for these kinds of recurring load-work-
unload workflows. Fig. 2 illustrates our three-step (lwu)*
approach. 1 : A window of interest of hot CSV files is loaded
from a NAS/DFS or a local high-performance SSD/RAID

(a) CSV (b) relational

(c) physical (chunk-based column-store)

Figure 3: Continent names in three representations:
CSV (a), relational (b), and physical (c).

to a main memory database at wire speed. The window of
interest can even be bigger than the size of the main memory
as selection predicates can be pushed into the loading pro-
cess. Further, data can be compressed at load time. 2 : The
full set of features of a relational main memory database—
including e�cient support for queries (OLAP) and updates
(OLTP)—can be used by multiple users to work on the
loaded data. Cold, i.e., unloaded, data can be included in
analyses on-demand. 3 : Prior to loading new data, the
potentially modified data is unloaded to the NAS/DFS or
SSD/RAID in either a (compressed) binary or, for portabil-
ity and debugability, CSV format. Instant Loading is the
essential backbone that facilitates the (lwu)* approach.

Comparison to MapReduce approaches. Google’s
MapReduce [5] (MR) and its open-source implementation
Hadoop brought along new analysis approaches for struc-
tured text files. While we focus on analyzing data on a sin-
gle node, these approaches scale jobs out to several nodes.
By working on raw files, they further require no explicit
loading. On the downside, a comparison of databases and
MR [24] has shown that databases are, in general, much
easier to query and significantly faster at data analysis. Ex-
tensions of both systems such as Hive [31] and HAIL [6]
try to close the gap by, e.g., adding support for declarative
query languages, indexes, and raw data preprocessing. As
for comparison of MR with our approach, Instant Loading
in its current state aims at accelerating bulk loading on a
single main memory database node—that could be part of a
cluster of servers. We see scaleout of query and transaction
processing as an orthogonal direction of research. Neverthe-
less, MR-based systems could as well profit from the generic
high-performance CSV parsing and deserialization methods
proposed in this work.

2. DATA REPRESENTATIONS
An important part of bulk loading is the transformation

and reorganization of data from one format into another.
This paper focuses on the comma separated values (CSV),
relational, and common physical representations in main
memory database systems; Fig. 3 illustrates these three.

CSV representation. CSV is a simple, yet widely used
data format that represents tabular data as a sequence of
characters in a human readable format. It is in many cases
the least common denominator of information exchange. As
such, tera-scale archives of CSV and CSV-like data exist in

2

• Bulk loading of structured text data is slow in current DBMSs	


• Current loading does not saturate wire speed of data source and data sink	


• Instant Loading allows scalable bulk loading at wire speed by efficient task- 

and data-parallelization	


• 10x faster than Vectorwise/MonetDB, orders of magnitude faster than 

traditional DBMSs (with same conversions/consistency checks)

Mühlbauer, T.; Rödiger, W.; Seilbeck, R.; Reiser, A.; Kemper, A.; Neumann, T., “Instant Loading for Main 
Memory Databases”, PVLDB, 2013, presented at VLDB 2014



ScyPer Replication and Scalable OLAP Throughput 
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ABSTRACT
Ever increasing main memory sizes and the advent of multi-
core parallel processing have fostered the development of
in-core databases. Even the transactional data of large en-
terprises can be retained in-memory on a single server. Mod-
ern in-core databases like our HyPer system achieve best-of-
breed OLTP throughput that is su�cient for the lion’s share
of applications. Remaining server resources are used for
OLAP query processing on the latest transactional data, i.e.,
real-time business analytics. While OLTP performance of a
single server is su�cient, an increasing demand for OLAP
throughput can only be satisfied economically by a scale-out.

In this work we present ScyPer, a Scale-out of our HyPer
main memory database system that horizontally scales out
on shared-nothing hardware. With ScyPer we aim at (i)
sustaining the superior OLTP throughput of a single HyPer
server, and (ii) providing elastic OLAP throughput by pro-
visioning additional servers on-demand, e.g., in the Cloud.

1. INTRODUCTION
Declining DRAM prices have lead to ever increasing main

memory sizes. Together with the advent of multi-core par-
allel processing, these two trends have fostered the devel-
opment of in-core database systems, i.e., systems that store
and process data solely in main memory. On the high end,
Oracle recently announced the SPARC M5-32 [6] with up to
32 CPUs and 32TB of main memory in a single machine.
While the M5-32 certainly has a high price tag, servers with
1TB of main memory are already retailing for less than
$35,000. On such a server, in-core databases like our HyPer

⇤Tobias Mühlbauer is a recipient of the Google Europe Fel-
lowship in Structured Data Analysis, and this research is
supported in part by this Google Fellowship. Wolf Rödiger is
a recipient of the Oracle External Research Fellowship. This
work has been sponsored by the German Federal Ministry of
Education and Research (BMBF) grant HDBC 01IS12026.
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Figure 1: Elastic provisioning of secondary HyPer
nodes for scalable OLAP throughput

system [3] process more than 100,000 TPC-C transactions
(TX) per second in a single thread, which is enough for hu-
man generated workloads even during peak hours. A ball-
park estimate of Amazon’s yearly transactional data volume
further reveals that retaining all data in-memory is feasible
even for large enterprises: with a revenue of $60 billion,
an average item price of $15, and about 54B per orderline,
we derive less than 1/4TB for the orderlines—the dominant
repository in a sales application. We thus conjecture that for
the lion’s share of OLTP workloads, a single server su�ces.
Besides OLTP, data management solutions are today also

faced with analytical workloads (OLAP). It is common to
run these analytical queries in a separate data warehouse to
avoid interference with the mission-critical OLTP process-
ing. The data warehouse is updated only periodically (e.g.,
every night), which inevitably leads to the problem of data
staleness. Industry leaders like SAP’s Hasso Plattner [9] ar-
gue that this does not suit today’s business needs and call for
a real time business analytics paradigm, which aims at the
analysis of fresh transactional data. Emerging hybrid main
memory databases like SAP’s HANA or HyPer address this
issue. HyPer achieves best-of-breed OLTP throughput and
OLAP query response times in one system in parallel on the
same database state. Even though available resources—i.e.,
CPU cores that are not used for OLTP—can process OLAP
queries, OLAP throughput is still limited.
In this work we present ScyPer, a Scaled-out version of

our HyPer main memory database system that horizontally
scales out on shared-nothing hardware, e.g., in the Cloud.
With ScyPer we aim at (i) sustaining the superior OLTP
throughput of a single HyPer server, and (ii) providing elas-
tic OLAP throughput by provisioning additional servers on-
demand. Fig. 1 gives an overview of its architecture.
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Figure 3: Time savings when replaying 100k TPC-C
transactions using logical and physical redo logging

redo log has to be persisted and written to durable storage
so that it can be replayed. The undo log however can be
discarded when a TX commits.

ScyPer uses multicasting to propagate the redo log of com-
mitted TX from the primary to secondary nodes to keep
them up-to-date with the most recent transactional state.
Multicasting allows to add secondaries on-demand without
increasing the network bandwidth usage.

UDP vs. PGM multicast. Standard UDP multicasting
is not a feasible solution for ScyPer as it may drop messages,
deliver them multiple times, or transfer them out of order.
Instead, ScyPer uses OpenPGM for multicasting, an open
source implementation of the Pragmatic General Multicast
(PGM) protocol [8], which is designed for reliable and or-
dered transmission of messages from a single source to mul-
tiple receivers. Receivers detect message loss and recover by
requesting a retransmission from the sender.

Logical vs. physical logging. ScyPer supports both, the
use of logical and physical redo logs for redo log propagation.
These two alternatives di↵er in the size of the resulting log
and the time needed to replay it. While in a logical redo log
only the TX identifier and invocation parameters are logged,
the physical redo log logs the individual insert, update, and
delete statements that modified the database during the TX.
Physical redo logging results in a larger log but replaying it
is often much faster compared to logical logging, especially
when the logged TX executed costly logic or many read op-
erations. In any case, TX that use operations where the
outcome can not be determined solely by the transactional
state, e.g., random operations or current time information,
have to be logged using physical redo logging. It is of note
that logical redo logging is restricted to pre-canned stored
procedures. However, stored procedures can be added to
ScyPer at any time by a low-overhead system-internal TX.

As mentioned before, secondaries do not need to replay
all TX. Only committed TX that modified data are logged.
Fig. 3 shows that replaying the logical log of 100,000 TPC-
C TX saves 17% in execution time compared to the original
processing of the TX by not having to re-execute reader and
aborted TX and an additional 6% for not having to log again
(undo and redo log)—together this adds up to savings of
23%. Physical logging is even able to save 56% of execution
time as it further does not re-execute read operations of
writers and only replays basic inserts, updates and deletes.

The physical log for 100,000 TPC-C TX has a size of
85MB and is therefore about ⇥5 larger than the logical log
which needs only 14MB. An individual physical log entry
has an average size of ⇠1,500B, whereas a logical log entry

1GbE InfiniBand

UDP PGM UDP PGM

Bandwidth [Mbit/s] 906 675 14,060 1,832

Throughput [1,000/s] 81 43 1,252 112

Latency [µs] —– 100.4—– ——13.5——

Table 1: Comparison of UDP and PGM perfor-
mance for Gigabit Ethernet and InfiniBand 4⇥QDR
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Figure 4: Two problems which lead to unexpected
results prevented by global TX-consistent snapshots

has ⇠250B. Group commits allow to bundle and compress
log entries for improved network usage. Compression is not
feasible on a per-TX basis as the individual log entries are
simply too small. Compressing the log for 100,000 TPC-C
transactions using LZ4 compression reduces the size by 48%
in the case of physical and by 54% for logical logging.
Ethernet vs. InfiniBand. Table 1 compares the single-

threaded performance of UDP and PGM multicast in a 1
Gigabit Ethernet (1GbE) and a 4⇥QDR IPoIB InfiniBand
infrastructure. Our setup consists of four machines each
equipped with an on-board Intel 82579V 1GbE adapter and
a Mellanox ConnectX-3 InfiniBand adapter (PCIe 3 ⇥8).
We used a standard 1GbE switch and a Mellanox 8 Port
40Gbit/s QSFP switch. UDP was measured with 1.5 kB
datagrams; PGM messages had a size of 2 kB. The UDP
bandwidth and throughput increases by a factor of 15 from
1GbE to InfiniBand; PGM still profits by a factor of 2.7.
The latency is, in both cases, reduced by a factor of 7.
With a processing speed of around 110,000 TPC-C TX

per second, HyPer creates ⇠60,000 redo log entries per sec-
ond per OLTP thread. 1GbE allows the multicasting of
the 60,000 logical log entries but o↵ers not enough perfor-
mance for physical logging due to its low PGM multicast
performance. Only when group commits with log compres-
sion are used, physical redo log entries can be multicast over
1GbE. Our InfiniBand setup can handle physical redo log-
ging without compression and even has free capacities to
support multiple outgoing multicast streams. These could
be used for the simultaneous propagation of the redo logs of
all TX-processing threads in a partitioned execution setting.

2.2 Distributed Snapshots
ScyPer adapts HyPer’s e�cient virtual memory snapshot-

ting mechanism [3] to the distributed setting. In the fol-
lowing, we describe how we designed ScyPer’s global TX-
consistent snapshotting mechanism to solve two potential
problems which a↵ect query processing on transactional data:
local order violations and diverging distributed reads.
Local order violations. Fig. 4(a) shows a schedule which

exhibits a local order violation: First, the snapshot is cre-

• Secondary nodes needed for high availability–why not use them for OLAP?	


• Primary HyPer node processes transactions and multicasts the redo log to 

secondaries (via Ethernet or Infiniband)	


• We advocate for physical log multicasting after commit	



• non-determinism in transaction logic and by unforeseeable faults	


• no need to re-execute expensive transaction logic

Mühlbauer, T.; Rödiger, W.; Reiser, A.; Kemper, A.; Neumann, T., “ScyPer: Elastic OLAP Throughput on 
Transactional Data”, DanaC, 2013
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Optimal Partition Assignment
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Data Shuffling Distributed Query Processing with HyPer 

!
Locality-aware data shuffling:	



• can exploit already small degrees of data locality	


• does not degrade when data exhibits no co-location	


• optimally assigns partitions	


• avoids cross traffic through communication scheduling

Rödiger, W.; Mühlbauer, T.; Unterbrunner, P.; Reiser, A.; Kemper, A.; Neumann, T., “Locality-Sensitive 
Operators for Parallel Main-Memory Database Clusters”, ICDE, 2014 

Distributed operators 
like the join operator 
need data shuffling
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http://www.hyper-db.com/	



http://www.hyper-db.com
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http://www.hyper-db.com/interface.html	



TPC-H query 8

http://www.hyper-db.com
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http://www.hyper-db.com/interface.html	



TPC-H query 8

http://www.hyper-db.com
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http://www.hyper-db.com/interface.html	



TPC-H query 8

WebInterface on TPC-H scale factor 1, non-parallel query execution	


Note: compilation time independent of scale factor	



Soon: WebInterface on brawny machine, TPC-H scale factor 100, parallel query 
execution and instant loading interface for your own files!

http://www.hyper-db.com
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                    Conclusion
                    http://www.hyper-db.com/	



!
Inspired by “OLTP through the looking glass” and “The End of an Architectural 
Era”, the HyPer project has been started.	



!

HyPer is one DBMS that …	



• offers highest performance on both, brawny x86-64 platforms                       
as well as wimpy ARM platforms	



• performance comparable to/outperforming VoltDB in TPC-C	



• performance comparable to/outperforming Vectorwise in TPC-H	



• enables OLAP on the most recent OLTP state

http://www.hyper-db.com
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