
queries

high-speed
NAS/DFS or SSD/RAID

un
lo

ad

... ...
CSV CSV or binary

31 2Load CSV Work: OLTP and OLAP in
full-featured database

Unload

window of interest

updates 

loading/unloading at wire speedlo
ad

m
ai

n 
m

em
or

y

Figure 2: Instant Loading for data staging process-
ing: load-work-unload cycles across CSV data.

Contributions. To achieve true instantaneous loading,
we optimize CSV bulk loading for modern super-scalar multi-
core CPUs by task- and data-parallelizing all phases of load-
ing. In particular, we make the following contributions: In
a first step we propose generic high-performance parsing,
deserialization, and input validation methods based on SSE
4.2 SIMD instructions. While these already improve load-
ing time significantly, other phases of loading become the
bottleneck. We thus further show how copying deserialized
tuples into the storage backend can be sped up and how in-
dex creation can e�ciently be interleaved with parallelized
bulk loading using merge-able index structures (e.g., hash-
ing with chaining and the adaptive radix tree (ART) [21]).

Our implementation of the Instant Loading approach aims
at highest performance in an in-memory computation set-
ting where raw CPU costs dominate and I/O is orders of
magnitude faster than disk access. We therefore strive for
good code locality and apply light-weight synchronization
primitives such as atomic instructions.

To prove its feasibility, we integrate the generic Instant
Loading approach in our main memory database system Hy-
Per [20] and evaluate our implementation using the industry-
standard TPC benchmarks. Results show improvements of
up to a factor of 10 on a quad-core commodity machine com-
pared to current main memory database CSV bulk loading
methods in, e.g., MonetDB [4] and Vectorwise. As Instant
Loading minimizes the proportion of sequential code, we
expect it to continue to scale with faster data sources and
CPUs with ever more cores.

Instant Loading in action: the (lwu)* data staging
processing model. Modern servers with 1TB of main
memory and more o↵er enough space to facilitate a highly
e�cient data staging processing model to work on large sets
of structured text data using a main memory database. Our
processing model consists of instantaneous load -work-unload
cycles (lwu)* across windows of interest.

Data staging workflows exist in eScience (e.g., astronomy
and genetics [30, 29]) and other big data analytics appli-
cations. For example, Netflix, a popular on-demand media
streaming service, reported that they are collecting 0.6TB
of CSV-like log data in a DFS per day [11]. Each hour,
the last hour’s structured log data is loaded to a 50+ node
Hadoop/Hive-based data warehouse, which is used for the
extraction of performance indicators and for ad-hoc queries.
Our vision is to use Instant Loading in a single-node main
memory database for these kinds of recurring load-work-
unload workflows. Fig. 2 illustrates our three-step (lwu)*
approach. 1 : A window of interest of hot CSV files is loaded
from a NAS/DFS or a local high-performance SSD/RAID

1,Africa\n
2,Antarctica\n
3,Asia\n
4,Australia\n
5,Europe\n
6,North America\n
7,South America\n

(a) CSV

id name
1 Africa
2 Antarctica
3 Asia
4 Australia
5 Europe
6 North America
7 South America

(b) relational

Partition 1 Partition 2

1 Africa
2 Antarctica

3 Asia
4 Australia

5 Europe
6 North America

7 South America

vector chunk

(c) physical (chunk-based column-store)

Figure 3: Continent names in three representations:
CSV (a), relational (b), and physical (c).

to a main memory database at wire speed. The window of
interest can even be bigger than the size of the main memory
as selection predicates can be pushed into the loading pro-
cess. Further, data can be compressed at load time. 2 : The
full set of features of a relational main memory database—
including e�cient support for queries (OLAP) and updates
(OLTP)—can be used by multiple users to work on the
loaded data. Cold, i.e., unloaded, data can be included in
analyses on-demand. 3 : Prior to loading new data, the
potentially modified data is unloaded to the NAS/DFS or
SSD/RAID in either a (compressed) binary or, for portabil-
ity and debugability, CSV format. Instant Loading is the
essential backbone that facilitates the (lwu)* approach.

Comparison to MapReduce approaches. Google’s
MapReduce [5] (MR) and its open-source implementation
Hadoop brought along new analysis approaches for struc-
tured text files. While we focus on analyzing data on a sin-
gle node, these approaches scale jobs out to several nodes.
By working on raw files, they further require no explicit
loading. On the downside, a comparison of databases and
MR [24] has shown that databases are, in general, much
easier to query and significantly faster at data analysis. Ex-
tensions of both systems such as Hive [31] and HAIL [6]
try to close the gap by, e.g., adding support for declarative
query languages, indexes, and raw data preprocessing. As
for comparison of MR with our approach, Instant Loading
in its current state aims at accelerating bulk loading on a
single main memory database node—that could be part of a
cluster of servers. We see scaleout of query and transaction
processing as an orthogonal direction of research. Neverthe-
less, MR-based systems could as well profit from the generic
high-performance CSV parsing and deserialization methods
proposed in this work.

2. DATA REPRESENTATIONS
An important part of bulk loading is the transformation

and reorganization of data from one format into another.
This paper focuses on the comma separated values (CSV),
relational, and common physical representations in main
memory database systems; Fig. 3 illustrates these three.

CSV representation. CSV is a simple, yet widely used
data format that represents tabular data as a sequence of
characters in a human readable format. It is in many cases
the least common denominator of information exchange. As
such, tera-scale archives of CSV and CSV-like data exist in

2


