
normal
execution

logical log
replaying

physical log
replaying

0

200

400

600

800

56%
faster

23%
faster

ex
ec
u
ti
o
n
ti
m
e
[m

s]
writers readers aborts

Figure 3: Time savings when replaying 100k TPC-C
transactions using logical and physical redo logging

redo log has to be persisted and written to durable storage
so that it can be replayed. The undo log however can be
discarded when a TX commits.

ScyPer uses multicasting to propagate the redo log of com-
mitted TX from the primary to secondary nodes to keep
them up-to-date with the most recent transactional state.
Multicasting allows to add secondaries on-demand without
increasing the network bandwidth usage.

UDP vs. PGM multicast. Standard UDP multicasting
is not a feasible solution for ScyPer as it may drop messages,
deliver them multiple times, or transfer them out of order.
Instead, ScyPer uses OpenPGM for multicasting, an open
source implementation of the Pragmatic General Multicast
(PGM) protocol [8], which is designed for reliable and or-
dered transmission of messages from a single source to mul-
tiple receivers. Receivers detect message loss and recover by
requesting a retransmission from the sender.

Logical vs. physical logging. ScyPer supports both, the
use of logical and physical redo logs for redo log propagation.
These two alternatives di↵er in the size of the resulting log
and the time needed to replay it. While in a logical redo log
only the TX identifier and invocation parameters are logged,
the physical redo log logs the individual insert, update, and
delete statements that modified the database during the TX.
Physical redo logging results in a larger log but replaying it
is often much faster compared to logical logging, especially
when the logged TX executed costly logic or many read op-
erations. In any case, TX that use operations where the
outcome can not be determined solely by the transactional
state, e.g., random operations or current time information,
have to be logged using physical redo logging. It is of note
that logical redo logging is restricted to pre-canned stored
procedures. However, stored procedures can be added to
ScyPer at any time by a low-overhead system-internal TX.

As mentioned before, secondaries do not need to replay
all TX. Only committed TX that modified data are logged.
Fig. 3 shows that replaying the logical log of 100,000 TPC-
C TX saves 17% in execution time compared to the original
processing of the TX by not having to re-execute reader and
aborted TX and an additional 6% for not having to log again
(undo and redo log)—together this adds up to savings of
23%. Physical logging is even able to save 56% of execution
time as it further does not re-execute read operations of
writers and only replays basic inserts, updates and deletes.

The physical log for 100,000 TPC-C TX has a size of
85MB and is therefore about ⇥5 larger than the logical log
which needs only 14MB. An individual physical log entry
has an average size of ⇠1,500B, whereas a logical log entry

1GbE InfiniBand

UDP PGM UDP PGM

Bandwidth [Mbit/s] 906 675 14,060 1,832

Throughput [1,000/s] 81 43 1,252 112

Latency [µs] —– 100.4—– ——13.5——

Table 1: Comparison of UDP and PGM perfor-
mance for Gigabit Ethernet and InfiniBand 4⇥QDR

3. read a

a

LSN 101

LSN 100

a*
2. write 

a=a*

1. fork()

(a) Local order violation

Non-transactional Data

...

On Demand Secondaries

Persistent Log

1. read a

a* a

2. read a

LSN 103 LSN 100

(b) Diverging distributed reads

Figure 4: Two problems which lead to unexpected
results prevented by global TX-consistent snapshots

has ⇠250B. Group commits allow to bundle and compress
log entries for improved network usage. Compression is not
feasible on a per-TX basis as the individual log entries are
simply too small. Compressing the log for 100,000 TPC-C
transactions using LZ4 compression reduces the size by 48%
in the case of physical and by 54% for logical logging.

Ethernet vs. InfiniBand. Table 1 compares the single-
threaded performance of UDP and PGM multicast in a 1
Gigabit Ethernet (1GbE) and a 4⇥QDR IPoIB InfiniBand
infrastructure. Our setup consists of four machines each
equipped with an on-board Intel 82579V 1GbE adapter and
a Mellanox ConnectX-3 InfiniBand adapter (PCIe 3 ⇥8).
We used a standard 1GbE switch and a Mellanox 8 Port
40Gbit/s QSFP switch. UDP was measured with 1.5 kB
datagrams; PGM messages had a size of 2 kB. The UDP
bandwidth and throughput increases by a factor of 15 from
1GbE to InfiniBand; PGM still profits by a factor of 2.7.
The latency is, in both cases, reduced by a factor of 7.

With a processing speed of around 110,000 TPC-C TX
per second, HyPer creates ⇠60,000 redo log entries per sec-
ond per OLTP thread. 1GbE allows the multicasting of
the 60,000 logical log entries but o↵ers not enough perfor-
mance for physical logging due to its low PGM multicast
performance. Only when group commits with log compres-
sion are used, physical redo log entries can be multicast over
1GbE. Our InfiniBand setup can handle physical redo log-
ging without compression and even has free capacities to
support multiple outgoing multicast streams. These could
be used for the simultaneous propagation of the redo logs of
all TX-processing threads in a partitioned execution setting.

2.2 Distributed Snapshots
ScyPer adapts HyPer’s e�cient virtual memory snapshot-

ting mechanism [3] to the distributed setting. In the fol-
lowing, we describe how we designed ScyPer’s global TX-
consistent snapshotting mechanism to solve two potential
problems which a↵ect query processing on transactional data:
local order violations and diverging distributed reads.

Local order violations. Fig. 4(a) shows a schedule which
exhibits a local order violation: First, the snapshot is cre-


